
Containers and Virtual Machines at Scale: A Comparative
Study

Prateek Sharma1, Lucas Chaufournier1, Prashant Shenoy1, Y.C. Tay2

{prateeks, lucasch, shenoy}@cs.umass.edu, dcstayyc@nus.edu.sg
University of Massachusetts Amherst1, National University of Singapore2

ABSTRACT
Virtualization is used in data center and cloud environments to de-
couple applications from the hardware they run on. Hardware vir-
tualization and operating system level virtualization are two promi-
nent technologies that enable this. Containers, which use OS virtu-
alization, have recently surged in interest and deployment. In this
paper, we study the differences between the two virtualization tech-
nologies. We compare containers and virtual machines in large data
center environments along the dimensions of performance, man-
ageability and software development.

We evaluate the performance differences caused by the different
virtualization technologies in data center environments where mul-
tiple applications are running on the same servers (multi-tenancy).
Our results show that co-located applications can cause performance
interference, and the degree of interference is higher in the case of
containers for certain types of workloads. We also evaluate differ-
ences in the management frameworks which control deployment
and orchestration of containers and VMs. We show how the differ-
ent capabilities exposed by the two virtualization technologies can
affect the management and development of applications. Lastly, we
evaluate novel approaches which combine hardware and OS virtu-
alization.

CCS Concepts
•General and reference→Empirical studies; Evaluation; •Computer
systems organization → Cloud computing; •Software and its
engineering→ Operating systems; Cloud computing;

1. INTRODUCTION
Modern enterprises increasingly rely on IT applications for their

business needs. Today’s enterprise IT applications are hosted in
data centers—servers and storage that provide compute, storage
and network resources to these applications. Modern data centers
are increasingly virtualized where by applications are hosted on
one or more virtual machines that are then mapped onto physical
servers in the data center.

Virtualization provides a number of benefits. It enables a flexible
allocation of physical resources to virtualized applications where
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware’16, December 12 - 16, 2016, Trento, Italy
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4300-8/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2988336.2988337

the mapping of virtual to physical resources as well as the amount
of resources to each application can be varied dynamically to ad-
just to changing application workloads. Furthermore, virtualiza-
tion enables multi-tenancy, which allows multiple instances of vir-
tualized applications (“tenants”) to share a physical server. Multi-
tenancy allows data centers to consolidate and pack applications
into a smaller set of servers and reduce operating costs. Virtualiza-
tion also simplifies replication and scaling of applications.

There are two types of server virtualization technologies that
are common in data center environments—hardware-level virtual-
ization and operating system level virtualization. Hardware level
virtualization involves running a hypervisor which virtualizes the
server’s resources across multiple virtual machines. Each hardware
virtual machine (VM) runs its own operating system and applica-
tions. By contrast, operating system virtualization virtualizes re-
sources at the OS level. OS-level virtualization encapsulates stan-
dard OS processes and their dependencies to create “containers”,
which are collectively managed by the underlying OS kernel. Ex-
amples of hardware virtualization include Xen [26], KVM [40],
and VMware ESX [22]. Operating system virtualization is used by
Linux containers (LXC [7]), Ubuntu LXD [17], Docker [2], BSD
Jails [38], Solaris Zones [28] and Windows Containers [24].

Both types of virtualization technologies also have management
frameworks that enable VMs and applications to be deployed and
managed at data center scale. Examples of VM management frame-
works include commercial offerings like vCenter [23] and open
source frameworks like OpenStack [8], CloudStack [12]. Kuber-
netes [5] and Docker Swarm [13] are recent container management
frameworks.

While hardware virtualization has been the predominant virtual-
ization technology for deploying, packaging, and managing appli-
cations; containers (which use operating system virtualization) are
increasingly filling that role due to the popularity of systems like
Docker [2]. Containers promise low-overhead virtualization and
improved performance when compared to VMs. Despite the surge
of interest in containers in enterprise environments, there is a dis-
tinct lack of performance comparison studies which quantify and
compare the performance benefits of containers and VMs. Previ-
ous research [25, 31] has compared the two technologies for single
server environments, and our work builds on past work by exam-
ining performance in the presence of interference and also focuses
on multi-server deployments that are common in cluster and data
center environments.

Given these trends, in this paper we ask the following questions:

1. When deploying applications in a data center environment,
what are the advantages and disadvantages of each virtu-
alization platform with regards to application performance,
manageability and deployment at scale?

http://dx.doi.org/10.1145/2988336.2988337

2. Under what scenarios is one technology more suitable than
the other?

To answer these questions, we conduct a detailed comparison
of hardware and OS virtualization. While some of our results and
observations are specific to the idiosyncrasies of the platforms we
chose for our experimental evaluation, our goal is to derive gen-
eral results that are broadly applicable to the two types of vir-
tualization technologies. We choose open source platforms for
our evaluation—Linux containers (LXC) and KVM (a Linux-based
type-2 hypervisor) , and our method involves comparing four con-
figurations that are common in data center environments: bare-
metal, containers, virtual machines, and containers inside VMs.

Our comparative study asks these specific questions:

1. How do the two virtualization approaches compare from a
resource isolation and overcommitment perspective?

2. How does each approach compare from the perspective of
deploying many applications in VMs/containers at scale?

3. How does each virtualization approach compare with respect
to the application lifecycle and developer interaction?

4. Can approaches which combine these two technologies (con-
tainers inside VMs and lightweight VMs) enable the best of
both technologies to be reached?

Our results show that co-located applications can cause perfor-
mance interference, and the degree of interference is higher in the
case of containers for certain types of workloads (Section 4). We
also evaluate differences in the management frameworks which
control deployment and orchestration of containers and VMs (Sec-
tion 5). We show how the different capabilities exposed by the
two virtualization technologies can affect the management and de-
velopment of applications (Section 6). Lastly, we evaluate novel
approaches which combine hardware and OS virtualization (Sec-
tion 7).

2. BACKGROUND
In this section we provide some background on the two types of

virtualization technologies that we study in this paper.

2.1 Hardware Virtualization
Hardware virtualization involves virtualizing the hardware on a

server and creating virtual machines that provide the abstraction
of a physical machine. Hardware virtualization involves running a
hypervisor, also referred to as a virtual machine monitor (VMM),
on the bare metal server. The hypervisor emulates virtual hardware
such as the CPU, memory, I/O, and network devices for each vir-
tual machine. Each VM then runs an independent operating system
and applications on top of that OS. The hypervisor is also respon-
sible for multiplexing the underlying physical resources across the
resident VMs.

Modern hypervisors support multiple strategies for resource al-
location and sharing of physical resources. Physical resources may
be strictly partitioned (dedicated) to each VM, or shared in a best
effort manner. The hypervisor is also responsible for isolation. Iso-
lation among VMs is provided by trapping privileged hardware ac-
cess by guest operating systems and performing those operations
in the hypervisor on behalf of the guest OS. Examples of hardware
virtualization platforms include VMware ESXi, Linux KVM and
Xen.

Hypervisor

Virtual H/W

Guest OS

Libraries

Application

Virtual Machine-1

Virtual H/W

Guest OS

Libraries

Application

Virtual Machine-2

Hardware

(a) Virtual Machines

Operating System Kernel

Libraries

Application

Container-1

Libraries

Application

Container-2

Hardware

(b) Containers

Figure 1: Hardware and operating system virtualization.

2.2 Operating System Virtualization
Operating system virtualization involves virtualizing the OS ker-

nel rather than the physical hardware (Figure 1). OS-level virtual
machines are referred to as containers. Each container encapsu-
lates a group of processes that are isolated from other containers
or processes in the system. The OS kernel is responsible for imple-
menting the container abstraction. It allocates CPU shares, memory
and network I/O to each container and can also provide file system
isolation.

Similar to hardware virtualization, different allocation strategies
may be supported such as dedicated, shared and best effort. Con-
tainers provide lightweight virtualization since they do not run their
own OS kernels, but instead rely on the underlying kernel for OS
services. In some cases, the underlying OS kernel may emulate a
different OS kernel version to processes within a container. This
is a feature often used to support backward OS compatibility or
emulating different OS APIs such as in LX branded zones [37] on
Solaris and in running linux applications on windows [10].

Many OS virtualization techniques exist including Solaris Zones,
BSD-jails and Linux LXC. The recent emergence of Docker, a
container platform similar to LXC but with a layered filesystem
and added software engineering benefits, has renewed interest in
container-based virtualization for data centers and the cloud. Linux
containers in particular employ two key features:
Cgroups. Control groups [6] are a kernel mechanism for control-
ling the resource allocation to process groups. Cgroups exist for
each major resource type: CPU, memory, network, block-IO, and
devices. The resource allocation for each of these can be controlled
individually, allowing the complete resource limits for a process or
a process group to be specified.
Namespaces. A namespace provides an abstraction for a kernel re-
source that makes it appear to the container that it has its own pri-
vate, isolated instance of the resource. In Linux, there are names-
paces for isolating: process IDs, user IDs, file system mount points,
networking interfaces, IPC, and host names [16].

2.3 Virtualized Data Centers
While hardware and operating system level virtualization oper-

ates at the granularity of a single server, data centers are comprised
of large clusters of servers, each of which is virtualized. Conse-
quently, data centers must rely on management frameworks that
enable virtualized resources of a cluster of servers to be managed
efficiently.

Such management frameworks simplify the placement and map-
ping of VMs onto physical machines, enable VMs to be moved
from one machine to another (for load balancing) or allow for VMs
to be resized (to adjust to dynamic workloads). Frameworks also
support service orchestration, configuration management and au-
tomation of cluster management tasks. Examples of popular man-

Image Management
§5.3, §6.1

Software Engineering
§6.2, §6.3

Migration
§5.2

Resource Allocation
Overcommit

§4.3
Limits
§5.1

CPU Memory Disk Network
§4.2.2

§4.1

§4.2.1

§4.1

§4.2.3

§4.1

§4.2.4

§4.1

Isolation

Baseline

Hardware
Virtualization

OS
Virtualization

Situational

Figure 2: Evaluation map of virtualization platform perfor-
mance. Shaded areas represent where a platform’s capabilities
outperforms the other.

agement frameworks for hardware virtualization include OpenStack [8]
& VMware vCenter [23] while for OS-level virtualization there ex-
ist platforms such as Kubernetes [5] and Docker Swarm [13].

3. PROBLEM STATEMENT
The goal of our work is to conduct a comparative study of hard-

ware and OS-level virtualization from the perspective of a data cen-
ter. Some qualitative differences between the two are apparent.

OS-level virtualization is lightweight in nature and the emer-
gence of platforms like Docker have brought numerous advantages
from an application development and deployment standpoint. VMs
are considered to be more heavyweight but provide more robust iso-
lation across untrusted co-resident VMs. Furthermore, while both
hardware and OS-level virtualization have been around for decades,
the same is not true for their management frameworks.

Management frameworks for hardware virtualization such as vCen-
ter and OpenStack have been around for longer and have acquired
more functionality over the years. In contrast, OS-level manage-
ment frameworks such as Kubernetes are newer and less mature
but are evolving rapidly.

From a data center perspective, it is interesting to study what
kinds of scenarios are more suitable for hardware virtualization or
OS-level virtualization. In particular, our evaluation is guided by
the following research questions:

• What are the trade-offs between virtualization platforms on
a single server with regards to application performance, re-
source allocation and resource isolation?

• What are the trade-offs of the two techniques when allocating
resources from a cluster perspective?

• What are the benefits from the perspective of deployment and
application development process?

• Can the two virtualization techniques be combined to provide
high performance and ease of deployment/development?

A summary of our evaluation of the virtualization platforms can
be found in Figure 2.

4. SINGLE MACHINE PERFORMANCE
In this section, we compare the single-machine performance of

containers and VMs. Our focus is to highlight the performance
of different workload types under various deployment scenarios.
Prior work on containers and VM performance [25, 31] has fo-
cused on comparing the performance of both of these platforms in

isolation—the host is only running one instance of the application.
Instead, we consider the performance of applications as they are
deployed in data center and cloud environments. The two primary
characteristics of these environments are multi-tenancy and over-
commitment. Multi-tenancy arises when multiple applications are
deployed on shared hardware resources. Data centers and cloud
platforms may also overcommit their hardware resources by run-
ning applications with resource requirements that exceed available
capacity. Both multi-tenancy and overcommitment are used to in-
crease consolidation and reduce the operating costs in clouds and
data centers. Therefore, for our performance comparison of con-
tainers and VMs, we also focus on multi-tenancy and overcommit-
ment scenarios, in addition to the study of the virtualization over-
heads when the applications are running in isolation.

In all our experiments, we use KVM [40] (a type-2 hypervisor
based on Linux) for running VMs, and LXC [7] for running con-
tainers. This allows us to use the same Linux kernel and reduces
the differences in the software stacks when comparing the two plat-
forms, and tease out the differences between OS and hardware vir-
tualization. Since virtual machine performance can be affected by
hardware and hypervisor features, we restrict our evaluation to us-
ing hardware virtualization features that are present in standard de-
fault KVM installations. Wherever applicable, we will point to ad-
ditional hypervisor and hardware features that have shown to re-
duce virtualization overheads in specific scenarios.
Methodology. We configured both containers and VMs in such a
way that they are comparable environments and are allocated the
same amount of CPU and memory resources. We configured each
LXC container to use two cores, each pinned to a single core on the
host CPU. We set a hard limit of 4 GB of memory and used bridged
networking for public IP addresses. We configured each KVM VM
to use 2 cores, 4GB of memory and a 50GB hard disk image. We
configured the VMs to use virtIO for both network and disk I/O and
used a bridged networking interface with TAP for network connec-
tivity. The guest operating system for the VMs is Ubuntu 14.04.3
with a 3.19 Linux kernel. The LXC containers also use the same
Ubuntu 14.04.3 userspace libraries (since they are containers, the
kernel is shared with the host).
Setup. The hardware platform for all our experiments is a Dell
PowerEdge R210 II server with a 4 core 3.40GHz E3-1240 v2 Intel
Xeon CPU, 16GB memory, and a 1 TB 7200 RPM disk. We dis-
abled hyperthreading to reduce the effects of hardware scheduling
and improve the stability of our results. The host ran on Ubuntu
14.04.3 (64 bit) with a 3.19 Linux Kernel. For virtualization we
used LXC version 1.0.7 and QEMU with KVM version 2.0.0.
Workloads. We use these workloads which stress different re-
sources (CPU, memory, disk, network):
Filebench. We use the customizable file system benchmark filebench
v.1.4.91 with its randomrw workload to test file IO performance.
The randomrw workload allocates a 5Gb file and then spawns two
threads to work on the file, one for reads and one for writes. We
use the default 8KB IO size.
Kernel-compile. We use the Linux kernel compile benchmark to
test the CPU performance by measuring the runtime of compil-
ing Linux-4.2.2 with the default configuration and multiple threads
(equal to the number of available cores).
SpecJBB. SpecJBB2005 is a popular CPU and memory intensive
benchmark that emulates a three tier web application stack and ex-
ercises the underlying system supporting it.
RUBiS. RUBiS is a multi-tier web application that emulates the
popular auction site eBay. We run RUBiS version 1.4.3 with three
guests: one with the Apache and PHP frontend, one with the RU-
BiS backend MySQL database and one with the RUBiS client and

Filebench-throughput

Filebench-latency

Kernel-compile-time

SpecJBB-throughput

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Pe
rfo

rm
an

ce

 R
el

at
iv

e
to

 b
ar

e-
m

et
al lxc bare metal

Figure 3: LXC performance relative to bare metal is within
2%.

workload generator.
YCSB. YCSB is a workload generator developed by Yahoo to test
different key value stores used in the cloud. YCSB provides statis-
tics on the performance of load, insert, update and read operations.
We use YCSB version 0.4.0 with Redis version 3.0.5 key value
store. We use a YCSB workload which contains 50% reads and
50% writes.

4.1 Baseline Performance
We first measure the virtualization overhead when only a single

application is running on a physical host. This allows us to observe
and measure the performance overhead imposed by the virtualiza-
tion layer. We run the same workload, and configure the contain-
ers and the VMs to use the same amount of CPU and memory re-
sources. We shall show the performance of CPU, memory, and I/O
intensive workloads.

Because of virtualizing at the OS layer, running inside a con-
tainer does not add any noticeable overhead compared to running
the same application on the bare-metal OS. As alluded to in Sec-
tion 2, running an application inside a container involves two dif-
ferences when compared to running it as a conventional OS process
(or a group of processes). The first is that containers need resource
accounting to enforce resource limits. This resource accounting is
also done for the various operations that the kernel performs on
behalf of the application (handling system calls, caching directory
entries, etc), and adds only a minimal overhead. The other aspect
of containers is isolation, which is provided in Linux by names-
paces for processes, users, etc. Namespaces provide a virtualized
view of some kernel resources like processes, users, mount-points
etc, and the number of extra kernel-mode operations involved is
again limited. We can thus think of containers in this case as exten-
sions of the u-limit and r-limit [14] functionality. Our exper-
iments (Figure 3) did not yield any noticeable difference between
bare-metal and LXC performance, and for ease of exposition, we
assume that the bare-metal performance of applications is the same
as with LXC.
CPU. Figure 4a shows the difference in performance for CPU in-
tensive workloads. The performance difference when running on
VMs vs. LXCs is under 3% (LXC fares slightly better). Thus,
the hardware virtualization overhead for CPU intensive workloads
is small, which is in part due to virtualization support in the CPU
(VMX instructions and two dimensional paging) to reduce the num-
ber of traps to the hypervisor in case of privileged instructions.

Memory. Figure 4b shows the performance of Redis in-memory
key-value store under the YCSB benchmark. For the load, read,
and update operations, the VM latency is around 10% higher as
compared to LXC.
Disk. For testing disk I/O performance, we use the filebench ran-
domrw workload. Because all guest I/O must go through the hyper-
visor when using virtIO, the VM I/O performance is expected to be
worse than LXC. Figure 4c shows the throughput and latency for
the filebench benchmark. The disk throughput and latency for VMs
are 80% worse for the randomrw test. The randomrw filebench test
issues lots of small reads and writes, and each one of them has to
be handled by a single hypervisor thread. I/O workloads running
inside VMs that are more amenable to caching and buffering show
better performance, and we chose the randomrw workload as the
worst-case workload for virtIO.
Network. We use the RUBiS benchmark described earlier to mea-
sure network performance of guests. For RUBiS, we do not see a
noticeable difference in the performance between the two virtual-
ization techniques (Figure 4d).
Summary of baseline results: The performance overhead of hard-
ware virtualization is low when the application does not have to go
through the hypervisor, as is the case of CPU and memory oper-
ations. Throughput and latency of I/O intensive applications can
suffer even with paravirtualized I/O.

4.2 Performance Isolation
So far, we have shown the performance overheads of virtualiza-

tion when only a single application is running on the physical host.
However, multiple applications of different types and belonging to
different users are often co-located on the same physical host to
increase consolidation. In this subsection, we measure the perfor-
mance interference due to co-located applications running inside
VMs and containers.

When measuring this “noisy neighbor” effect, we are interested
in seeing how one application affects the performance of another.
We shall compare the performance of applications when co-located
with a variety of neighbors versus their stand-alone performance.
In all our experiments, the VMs and containers are configured with
the same amount of CPU and memory resources. Since the applica-
tion performance depends on the co-located applications, we com-
pare the application performance for a diverse range of co-located
applications:

Competing. These co-located applications are contending for the
same resource. For example, if our target application is CPU-
intensive, then the other co-located applications are also CPU-
intensive. This tests how well the platform layer (OS or the
hypervisor) is able to partition and multiplex the resources
among multiple claimants.

Orthogonal. In this scenario, the co-located applications seek dif-
ferent resources. For example, if one application is CPU-
intensive, the other one is network intensive. This scenario is
likely when the scheduling and placement middleware prefers
to co-locate non-competing applications on the same host to
minimize resource contention and improve consolidation.

Adversarial. In this scenario, the other co-located application is a
misbehaving, adversarial application which tries to cause the
other application to be starved of resources. In contrast to
the earlier configuration, these adversarial applications may
not represent realistic workloads, but may arise in practice if
multiple users are allowed to run their applications on shared
hardware, and these applications present a vector for a denial
of resource attack.

Kernel Compile
 Time

0
50

100
150
200
250
300
350

Ru
nn

in
g

tim
e

(s
)

SpecJBB
 Throughput

0
20
40
60
80
100
120
140
160

Th
ou

sa
nd

 o
ps

/s

lxc vm

(a) CPU intensive

load read update
YCSB Redis operations

0
50

100
150
200
250

La
te

nc
y

(m
s)

lxc vm

(b) Memory intensive

Filebench
 Throughput
0

2000
4000
6000
8000

10000
12000

Op
er

at
io

ns
/s

ec
on

d

Filebench
 Latency

0.0
0.2
0.4
0.6
0.8
1.0

m
s

lxc vm

(c) Disk intensive

Rubis
 Throughput

0
10
20
30
40
50
60
70
80

Re
qu

es
ts

/s
ec

on
d

lxc vm

(d) Network intensive

Figure 4: Performance overhead of KVM is negligible for our CPU and memory intensive workloads, but high in case of I/O intensive
applications. Unlike CPU and memory operations, I/O operations go through the hypervisor—contributing to their high overhead.

lxc-cpuset lxc-cpushare vm
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ke
rn

el
 c

om
pi

le
 ti

m
e

 R
el

at
iv

e
to

 n
o

in
te

rfe
re

nc
e

DNF DNF

Competing Orthogonal Adversarial

Figure 5: CPU interference is higher for LXC even with
CPU-sets, especially since adversarial workloads can cause co-
located applications to be starved of resources and not finish
execution (DNF: did not finish).

4.2.1 CPU Isolation
To measure the performance interference for CPU bound work-

loads, we compare the running time of the kernel compile appli-
cation when it is co-located with other applications relative to its
stand-alone performance without any interference. We use another
instance of the kernel compile workload to induce CPU contention,
SpecJBB as the orthogonal workload , and a fork-bomb as the ad-
versarial workload scenario. The fork bomb is a simple script that
overloads the process table by continually forking processes in an
infinite loop. Figure 5 shows the kernel compile performance rel-
ative to the no interference case for LXC and VMs. In the case of
LXC, there are two ways of allocating CPU resources. The LXC
containers can either be assigned to CPU-cores (cpu-sets), or the
containers can be multiplexed across all CPU cores in a fair-share
manner by the Linux CPU scheduler (cpu-shares).

The same amount of CPU resources were allocated in both the
CPU-shares and CPU-sets cases—50% CPU and 2 out of 4 cores
respectively. Despite this, running containers with CPU-shares re-
sults in a greater amount of interference, of up to 60% higher when
compared to the baseline case of stand-alone no-interference per-
formance.

From Figure 5, we see that when co-located with the adversarial
fork-bomb workload, the LXC containers are starved of resources
and do not finish in any reasonable amount of time, while the VM
manages to finish with a 30% performance degradation. While the
fork-bomb test may be an extreme adversarial workload, we note
that the leaky container abstraction which does not provide careful
accounting and control of every physical and kernel operation can
cause many more such cases to arise.

LXC VM0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

JB
B

th
ro

ug
hp

ut

 R
el

at
iv

e
to

 n
o

in
te

rfe
re

nc
e Competing Orthogonal Adversarial

Figure 6: Performance interference is limited for memory in-
tensive workloads, although LXC suffers more with the adver-
sarial (malloc-bomb) workload.

Result: Interference for CPU-bound workloads is mitigated by hy-
pervisors because of separate CPU schedulers in the guest oper-
ating systems. The shared host OS kernel can cause performance
disruption in the case of containers, and can potentially lead to
denial of service.

4.2.2 Memory Isolation
To measure performance interference for memory based work-

loads, we compare SpecJBB throughput against its baseline perfor-
mance. For the competing case we ran an additional instance of
SpecJBB, and used kernel compile as an orthogonal workload. To
illustrate an adversarial workload we used a malloc bomb, in an in-
finite loop, that incrementally allocates memory until it runs out of
space.

Figure 6 shows the memory interference result and shows that
memory isolation provided by containers is sufficient for most uses.
Both the competing and orthogonal workloads for VMs and LXC
are well within a reasonable range of their baseline performance. In
the adversarial case however, it appears that the VM outperforms
LXC. LXC sees a performance decrease of 32% where as the VM
only suffers a performance decrease of 11%.

4.2.3 Disk Isolation
For disk interference, we compare filebench’s baseline perfor-

mance against its performance while running alongside the three
types of interference workloads. We chose the following work-
loads as neighbors: a second instance of filebench for the compet-
ing case, kernel compile for orthogonal and an instance of Bon-
nie++, a benchmark that runs lots of small reads and writes, for
the adversarial case. The containers were configured with equal
block-IO cgroup weights to ensure equal I/O bandwidth allocation.
Figure 7 shows the disk interference result.

lxc-la
tency

vm-latency
0

2

4

6

8

10
Fi

le
be

nc
h

la
te

nc
y

 R
el

at
iv

e
to

 n
o

in
te

rfe
re

nc
e

lxc-th
roughput

vm-throughput
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fi
le

be
nc

h
th

ro
ug

hp
ut

 R

el
at

iv
e

to
 n

o
in

te
rfe

re
nc

e

Competing Orthogonal Adversarial

Figure 7: Disk performance interference is high for both con-
tainers and virtual machines.

LXC VM0.0

0.2

0.4

0.6

0.8

1.0

Ru
bi

s
th

ro
ug

hp
ut

 R

el
at

iv
e

to
 n

o
in

te
rfe

re
nc

e Competing Orthogonal Adversarial

Figure 8: Network performance interference when running
RUBiS is similar for both containers and virtual machines.

For LXC, the latency increases 8 times. For VMs, the latency
increase is only 2x. This reduction can be attributed to the fact that
the disk I/O performance for VMs is quite bad even in the isolated
case (Figure 4c), and raw disk bandwidth is still available for other
VMs to use. However, a reduction of 8x in the case of containers is
still significant, and points to the lack of disk I/O isolation.
Result: Sharing the host OS block layer components like the I/O
scheduler increases the performance interference for disk bound
workloads in containers. VMs may offer more isolation and shield
better against noisy neighbors, but the effectiveness of hypervisors
in mitigating I/O interference is reduced because of shared I/O
paths for guest I/O.

4.2.4 Network Isolation
To measure performance interference for network intensive work-

loads, we compare RUBiS throughput against its baseline perfor-
mance while running co-located with the three types of interfer-
ing workloads. To measure competing interference we run RUBiS
alongside the YCSB benchmark while we use SpecJBB to measure
orthogonal interference. To measure adversarial interference per-
formance we run a guest that is the receiver of a UDP bomb. The
guest runs a UDP server while being flooded with small UDP pack-
ets in an attempt to overload the shared network interface. Figure 8
shows the network interference results. For each type of workload,
there is no significant difference in interference.
Summary of interference results: Shared hypervisors or oper-
ating system components can reduce performance isolation, espe-
cially with competing and adversarial workloads in the case of con-
tainers.

Kernel Compile0.0
0.2
0.4
0.6
0.8
1.0

Ru
nn

in
g

Ti
m

e
Re

la
tiv

e
to

 L
XC lxc vm

(a) CPU intensive

SpecJBB0.0
0.2
0.4
0.6
0.8
1.0

Th
ro

ug
hp

ut
 R

el
at

iv
e

to
 L

XC lxc vm

(b) Memory intensive

Figure 9: Kernel compile and SpecJBB performance of VMs
when the CPU is overcommitted by a factor of 1.5.

4.3 Overcommitment
To improve packing efficiency, it is often necessary to overcom-

mit the physical resources. Containers use overcommitment mech-
anisms built into the operating system itself, such as CPU overcom-
mitment by multiplexing and memory overcommit by relying on
the virtual memory subsystem’s swapping and paging. Hypervisors
provide overcommitment by multiplexing the virtual hardware de-
vices onto the actual physical hardware. The overcommitment pro-
vided by hypervisors may be of reduced effectiveness because the
guest operating system may be in the dark about the resources that
have been taken from the VM. For example, the hypervisor might
preempt a vCPU of a VM at the wrong time when it is holding
locks. Such lock holder and lock waiter preemptions can degrade
performance for multi-threaded applications [45]. We investigate
how application performance behaves in resource overcommitment
scenarios.

Figure 9 compares the relative performance of LXC and VMs
in an overcommitment scenario where both the CPU and memory
have been oversubscribed by a factor of 1.5. CPU overcommit-
ment is handled in both hypervisors and operating systems by mul-
tiplexing multiple vCPUs and processes onto CPU cores, and for
the CPU intensive kernel compile workload, VM performance is
within 1% of LXC performance (Figure 9a).

Memory overcommitment in hypervisors is more challenging,
because virtual machines are allocated a fixed memory size upon
their creation, and overcommitting memory involves “stealing” pages
from the VM via approaches like host-swapping or ballooning. For
the more memory intensive SpecJBB workload (Figure 9b), the
VM performs about 10% worse compared to LXC. Memory over-
commitment for VMs can also be improved by approaches like
page deduplication [50, 27, 47] which reduce the effective mem-
ory footprint of VMs by sharing pages, or by using approaches
like transcendent memory [44], which can provide more efficient
in-memory compressed storage of evicted pages.
Result: Hypervisors handle CPU overcommitment more gracefully
than memory overcommitment, because vCPUs can be multiplexed
onto CPU cores dynamically.

5. CLUSTER MANAGEMENT
In this section, we illustrate the differences in managing contain-

ers and VMs at scale. Cluster operators seek to satisfy the resource
requirements of all applications and increase consolidation to re-
duce the operating costs. In the rest of this section, we shall see
how the different characteristics of containers and VMs affect the

25% 50% 75%
CPU allocation

0

50000

100000

150000

200000

Sp
ec

JB
B

th
ro

ug
hp

ut

CPU-set CPU-share

Figure 10: CPU-shares vs. CPU-sets allocation can have a sig-
nificant impact on application performance, even though the
same amount of CPU resources are allocated in each instance.

different options for managing and provisioning resources in a clus-
ter. For comparison purposes, we use VMware vCenter [23] and
OpenStack [8] as representative VM management platforms, and
Kubernetes [5] as a representative container orchestration system.

5.1 Resource Allocation
Data center and cloud operators use cluster management frame-

works to fulfill the resource requirements of applications. We focus
on the physical resource requirements of applications, and note that
handling application-SLA based requirements is generally outside
the scope of management frameworks. Cluster management soft-
ware rely on the resource provisioning “knobs” that the underlying
platforms (hypervisors and operating systems) provide for manag-
ing the resource allocation of VMs and containers. The hypervisor
controls the allocation of the virtual CPU, memory and I/O devices
for each VM. Since VMs can be thought of as sharing the “raw
hardware”, the resource allocation is also of that granularity. For
example, VMs may be allocated a fixed number of virtual CPUs,
memory, and I/O devices and bandwidth. For CPU and I/O band-
width, fair-share or other policies for resource multiplexing may be
implemented by the hypervisor.

With containers, resource allocation involves more dimensions,
since the resource control knobs provided by the operating sys-
tem are larger in number. In addition to physical resource alloca-
tion like CPU and memory, other kernel resources for controlling
CPU scheduling, swapping, etc can also be specified for contain-
ers (Table 1). Thus, provisioning for containers involves alloca-
tion of physical and operating system resources. Not limiting a
certain resource may lead to its excessive consumption, and cause
performance interference, as we have seen in Section 4.2. As we
have also seen, containers have multiple resource allocation options
for the same resource (cpu-sets and cpu-shares), and their selec-
tion can have a non-negligible impact on performance, as shown in
Figure 10. We see that the SpecJBB throughput differs by up to
40% when the container is allocated 1

4 th of cpu cores using cpu-
sets, when compared to the equivalent allocation of 25% with cpu-
shares.

In addition to the increased number of dimensions required to
specify resource requirements, container resource management faces
cross-platform challenges. With VMs, abstraction layers like lib-
Virt [15] allow management frameworks like OpenStack to run
VMs on multiple hypervisors. Policies for controlling and provi-
sioning VMs can be applied across hypervisors. However, in the
case of containers, the resource control interfaces are heavily op-
erating system dependent, and running containers across operating
systems may prove to be a challenge. Efforts like the Open Con-
tainer Initiative and CNCF (Cloud Native Computing Foundation)

Load Read Update
YCSB Operations

0
100
200
300
400
500
600
700
800
900

La
te

nc
y

(u
s)

Hard limit Soft limit

(a) Performance with hard vs. soft
limits when CPU and memory are
overcommitted by a factor of 1.5.

SpecJBB0
5000

10000
15000
20000
25000
30000

Th
ro
ug

hp
ut

lxc vm

(b) Performance of VMs
vs. soft-limited containers at
overcommitment factor of 2.

Figure 11: Soft limits in containers improve overcommitment
by allowing under utilized resources to be used by applications
that need them the most.

have been launched to develop a standards for container formats,
resource and lifecycle control. This will allow frameworks like
Kubernetes to specify resource allocation and control containers of
different types (Docker, rkt, etc) across different operating systems.

Soft and hard limits. A fundamental difference in resource allo-
cation with containers is the prevalence of soft limits on resources.
Soft limits enable applications to use resources beyond their allo-
cated limit if those resources are under-utilized. In the case of vir-
tual machines, resource limits are generally hard—the VM cannot
utilize more resources than its allocation even if these resources
are idle on the host. Dynamically increasing resource allocation to
VMs is fundamentally a hard problem. VMs are allocated virtual
hardware (CPUs, memory, I/O devices) before boot-up. Adding
virtual devices during guest execution requires the guest operat-
ing system to support some form of device hotplug. Because of
the rare nature of hotplugging CPU and memory in the physical
environment, hotplug support for operating systems is limited, and
therefore not a feasible option in most cases. Virtualization specific
interfaces such as transcendent memory [44] can be used to dynam-
ically increase effective VM memory, but current VM management
frameworks do not support it as it requires co-operation between
the VMs and the hypervisor, which is often hard to guarantee in
mulit-tenant environments.

By allowing applications to use under-utilized resources, soft
limits may enable more efficient resource utilization. Soft limits
are particularly effective in overcommitted scenarios. Figure 11a
shows scenarios where the CPU and memory for the containers
have been overcommitted by a factor of 1.5. In this scenario, the
YCSB latency is about 25% lower for read and update operations
if the containers are soft-limited. Similarly, Figure 11b shows re-
sults from a scenario where the resources were overcommitted by
a factor of two. The containers were again soft-limited, and we
compare against VMs which have hard limits. We again see a big
improvement with soft limits, as the SpecJBB throughput is 40%
higher with the soft-limited containers compared to the VMs.
Result: Soft-limits enable containers to run with better perfor-
mance on overcommitted hosts. Soft-limits are inherently difficult
with VMs because their resource allocation is fixed during guest
operating system boot-up.

KVM LXC/Docker
CPU VCPU count CPU-set/CPU-shares, cpu-period, cpu-quota,

Memory Virtual RAM size Memory soft/hard limit, kernel memory, overcommitment options, shared-memory size, swap
size, swappiness

I/O virtIO, SR-IOV Blkio read/write weights, priorities
Security Policy None Privilege levels, Capabilities(kernel modules, nice, resource limits, setuid)

Volumes Virtual disks File-system paths
Environment vars N/A Entry scripts

Table 1: Configuration options available for LXC and KVM. Containers have more options available.

Application Container memory size VM size
Kernel Compile 0.42 4

YCSB 4 4
SpecJBB 1.7 4
Filebench 2.2 4

Table 2: Memory sizes (in Gigabytes) which have to be mi-
grated for various applications. The mapped memory which
needs to be migrated is significantly smaller for containers.

5.2 Migration
Live migration is an important mechanism to transfer the appli-

cation state from one host to another, and is used in data centers for
load balancing, consolidation and fault-tolerance. Live-migration
for VMs works by periodically copying memory pages from the
source to the destination host, and management platforms trigger
migrations based on migration policies which take into account the
availability of resources on the source and destination hosts. The
duration of live migration depends on the application characteris-
tics (the page dirty rate) as well as the memory footprint of the
application.

Virtual machine live migration is mature and widely used in data
centers, and frameworks like vCenter have sophisticated policies
for automatically moving VMs to balance load. Unlike VM mi-
gration, container migration requires process migration techniques
and is not as reliable a mechanism. Container migration is harder
to implement in practice because of the large amount of operat-
ing system state associated with a process (process control block,
file table, sockets, etc) which must be captured and saved along
with the memory pages. As a result, projects such as CRIU [11]
(Checkpoint Restart In Userspace) have been attempting to pro-
vide live-migration for containers, but the functionality is limited
to a small set of applications which use the supported subset of
OS services. Container migration is hence not mature (yet), and is
not supported by management frameworks. Instead of migration,
killing and restarting stateless containers is a viable option for con-
solidation of containers. Furthermore, container migration depends
on the availability of many additional libraries and kernel features,
which may not be available on all the hosts. These dependencies
may limit the number of potential destination hosts for container
migration.

Migrating VMs involves the transfer of both the application state
and the guest operating system state (including slab and file-system
page caches), which can lead to increased migration times com-
pared to migrating the application state alone. We compare the
memory sizes of various applications when deployed in a contain-
ers and KVM VMs in Table 2. In both the cases, the containers and
VMs are configured with the same memory hard-limit. Except for
the YCSB workload, which uses the in-memory Redis key-value
store, the application memory footprint with containers is about

50-90% smaller as compared to the equivalent VMs.
Result: The memory footprint of containers is smaller than VMs,
leading to potentially smaller migration times. But container mi-
gration mechanisms are not currently mature enough, and this lack
of maturity along with the larger number of dependencies may limit
their functionality.

5.3 Deployment
Launching applications is the key feature provided by manage-

ment frameworks, and the ability to launch these applications at
low latency is an important requirement. This is especially the
case for containers whose use-cases often call for rapid deploy-
ment. Launching applications requires the management platform
to support and implement many policies for provisioning hardware
resources and deploying the VMs/containers. A significant amount
of effort has gone into provisioning policies and mechanisms for
VMs, and these policies may or may not translate to containers.

Management and orchestration frameworks must also provide
policies for application placement, which involves assigning ap-
plications to physical hosts with sufficient resources available. Vir-
tual machine placement for consolidation has received significant
attention [51]. For containers, which require a larger number of
dimensions to specify resource limits, existing placement and con-
solidation policies may need to be modified and refined. Man-
agement platforms also enforce co-location (affinity) constraints
which ensure that applications can be “bundled” and placed on the
same physical host. In Kubernetes, this is accomplished by using
pods, which are groups of containers and also function as the unit
of deployment. As we have shown earlier, containers suffer from
larger performance interference. Because of this concern, container
placement might need to be optimized to choose the right set of
neighbors for each application.

By running multiple instances of an application, virtualization
enables easy horizontal scaling. The number of replicas of a con-
tainer or a VM can be specified to the management frameworks.
Additionally, Kubernetes also monitors for failed replicas and restarts
failed replicas automatically. Quickly launching application repli-
cas to meet workload demand is useful to handle load spikes etc.
In the unoptimized case, booting up virtual machines can take tens
of seconds. By contrast, container start times are well under a sec-
ond [25]. An optimization to reduce the start-up latency of VMs is
to employ fast VM cloning [41]. A similar functionality is provided
by vCenter linked-clones.
Multi-tenancy An important aspect of virtualization is the ability
to share a cluster among multiple users. Due to hardware virtu-
alization’s strong resource isolation, multi-tenancy is common in
virtual machine environments. Because the isolation provided by
containers is weaker, multi-tenancy is considered too risky espe-
cially for Linux containers. In cases where the isolation provided
by the OS is strong enough (as in the case of Solaris), containers
have been used for multi-tenancy in production environments [4].

The multi-tenant support for container management platforms like
Kubernetes is under development but because of the security risks
of sharing machines between untrusted users, policies for security-
aware container placement may need to be developed. Unlike VMs
which are “secure by default”, containers require several security
configuration options (Table 1) to be specified for safe execution.
In addition to satisfying resource constraints, management frame-
works also need to verify and enforce these security constraints.
Summary. We have shown how the unique characteristics of VMs
and containers lead to the different management capabilities of their
respective management frameworks. As container technology ma-
tures, some of these are bound to change, and hence we have fo-
cused on the fundamental differences. There are opportunities and
challenges for resource allocation in containers as a result of their
richer resource allocation requirements; lack of live-migration, and
multi-tenancy constraints due to security and performance isolation
concerns.

6. END-TO-END DEPLOYMENT
Performance is not the sole appeal of containers. Systems like

Docker have surged in popularity by exploiting both the low de-
ployment overheads and the improvements in the software devel-
opment life cycle that containers enable. In this section, we look
at how containers and VMs differ in the end-to-end deployment of
applications—from the developer’s desktop/laptop to the produc-
tion cloud or data center.

6.1 Constructing Images
Disk images encapsulate the code, libraries, data, and the envi-

ronment required to run an application. Containers and VMs have
different approaches to the image construction problem. In the case
of VMs, constructing an image is really constructing a virtual disk
which has the operating system, application libraries, application
code and configuration, etc. The traditional way to build a vir-
tual machine is to build from scratch which involves allocating
blocks for a disk image and installing and configuring the oper-
ating system. Libraries and other dependencies of the application
are then installed via the operating system’s package management
toolchain.

Constructing VM images can be automated with systems like
Vagrant [21], Chef, Puppet, etc., wherein the VM images are cre-
ated by specifying configuration scripts and recipes to automate
operating system configuration, application installation and service
management. Additionally, cloud operators also provide virtual
appliances—pre-built and pre-configured images for running spe-
cific applications (such as MySQL).

Containers implement a different approach due to their light-
weight nature. Because containers can use the host file system,
they do not need virtual disks (which is a block-level abstraction
layer). Thus, a container “image” is simply a collection of files that
an application depends on, and includes libraries and other depen-
dencies of the application. In contrast to VMs, no operating system
kernel is present in the container image, since containers use the
host OS kernel. Similar to virtual appliances, pre-built container
images for popular applications exist. Users can download these
images and build off of them.

Constructing container images can also be automated in systems
like Docker [2] via dockerfiles. Container images can be built from
existing ones in a deterministic and repeatable manner by specify-
ing the commands and scripts to build them in the dockerfile. In
contrast to VMs where creating images is handled by third party
tools like Vagrant, dockerfiles are an integral part of Docker, and
enable tighter integration between containers and their provenance

Application Vagrant Docker
MySQL 236.2 129
Nodejs 303.8 49

Table 3: Time (in seconds) to build an image using Vagrant (for
VMs) and Docker.

information.
Due to differences in the contents and the sizes of constructed

images, the time to construct them are different for containers and
VMs. Table 3 shows the time to build images of popular applica-
tions when the build process is specified via Vagrant and Docker.
Building both container and VM images involves downloading the
base images (containing the bare operating system) and then in-
stalling the required software packages. The total time for creating
the VM images is about 2× that of creating the equivalent container
image. This increase can be attributed to the extra time spent in
downloading and configuring the operating system that is required
for virtual machines.

Application VM Docker Docker Incremental
MySQL 1.68GB 0.37GB 112KB
Nodejs 2.05GB 0.66GB 72KB

Table 4: Resulting image sizes when deploying various applica-
tions. For Docker, we also measure the incremental size when
launching multiple containers belonging to the same image.

The differences in creating images discussed above influence an-
other important concern: image size. The resulting image sizes are
also smaller for containers, because they do not require an operat-
ing system installation and additional overhead caused by the guest
OS file system, etc. This difference in image sizes is shown in Ta-
ble 4, which compares VM and container images for different ap-
plications. The smaller container image sizes (by up to 3x) allows
for faster deployment and lower storage overhead.
Results: Container images are faster to create and are smaller,
because the operating system and redundant libraries need not be
included.

6.2 Version Control
A novel feature that containers enable is the ability to version

control images. Just like version control for software, being able
to commit and track lineage of images is useful, and is a key fea-
ture in Docker’s design. In the case of Docker, this versioning is
performed by using copy-on-write functionality (like AuFS) in the
host file system. Storing images in a copy-on-write file system al-
lows an image to be composed of multiple layers, with each layer
being immutable. The base layer comprises of the base operat-
ing system, and modifications to existing images create additional
layers. In this way, multiple container images can share the same
physical files. Updates to files results in creation of new layers.

Virtual machine disks can also use layered storage in the form
of copy-on-write virtual disk formats (such as qcow2, FVD [49],
etc.). Unlike layered container images, virtual disks employ block
level copy-on-write instead of file-level. This finer granularity of
versioning creates a semantic decoupling between the user and the
virtual disks—it is harder to correlate changes in VM configura-
tions with changes in the the virtual disks. In the case of Docker,
layers also store their ancestor information and what commands
were used to build the layer. This allows Docker to have a seman-
tically rich image versioning tree.

Workload Docker VM
Dist Upgrade 470 391
Kernel install 292 303

Table 5: Running time (in seconds) of operations in Docker and
VMs. Docker image layers cause increase in runtime for write
intensive applications.

While layering enables versioning of images and allows images
to be easily composed, there are performance implications because
of the copy-on-write implications. Writes to a file in a layer causes
a new copy and a new layer to be created. We examine the per-
formance overhead induced by the copy on write layers in Table 5,
which shows the running time of write-heavy workloads. Docker’s
layered storage architecture contributes results in an almost 40%
slowdown compared to VMs. This slow-down is almost entirely at-
tributable to the AuFS [20] copy-on-write performance, and using
other file systems with more optimized copy-on-write functional-
ity, like ZFS, BtrFS, and OverlayFS can help bring the file-write
overhead down.

Immutable copy-on-write layers also make cloning images ex-
tremely fast, and this can be useful to deploy multiple containers
from the same image for rapid cloning and scaling. Starting multi-
ple containers from a single image is a lightweight operation, and
takes less than one second for most images. This is attributable to
the reduced state size which is associated with a container which
needs to be copied instead of copying an entire image. The incre-
mental image size for a new Docker container is shown in Table 4.
To launch a new container, only 100KB of extra storage space is
required, compared to more than 3 GB for VMs.
Result: Although copy-on-write layers used for storing container
images aid in reducing build times and enable versioning, they may
reduce application performance, especially for disk I/O intensive
applications, because of the overhead of copy-on-write.

6.3 Continuous Delivery/Integration
Faster image construction, image versioning, and rapid cloning

have changed software engineering practices. Encapsulating all
software dependencies within an image provides a standardized and
convenient way of sharing and deploying software. Both VM and
container images are used for packaging application software, but
as we have discussed, the smaller image footprint and the semanti-
cally rich image versioning has made container images (especially
Docker images) an increasingly popular way to package and de-
ploy applications. The metaphor of OS containers being “shipping
containers” has also been used widely—instead of custom build
and deployment scripts for each applications, container (and VM)
images provide standardized formats and tool-chains.

Another novel use-case of container images is to link container
image versions to the application software versions which they cor-
respond to. For example, Docker images can be automatically
built whenever changes to a source code repository are committed.
This allows easier and smoother continuous integration, since the
changes in code base are automatically reflected in the application
images. An important aspect of the distributed systems develop-
ment process is updating deployed services to reflect code changes,
add features, etc. Rolling updates of deployed containers is a fea-
ture which is exposed by Kubernetes.

7. MIXING CONTAINERS AND VMS
Thus far we have seen that containers and VMs have perfor-

mance and manageability trade-offs. It is interesting to consider

Kernel Compile
YCSB-read

YCSB-update
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ru
nn

in
g

Ti
m

e
Re

la
tiv

e
to

 L
XC

lxc lxcvm vm

Figure 12: Relative performance of VMs and nested containers
(LXCVM) for Kernel compile and YCSB workloads when both
CPU and memory are overcommitted by 1.5 times. Containers
inside VMs improve the running times of these workloads by
up to 5%.

if it is possible to combine the best characteristics of each platform
into a single architecture. We shall study the viability of two ap-
proaches which mix OS-level and hardware virtualization: nested
containers in VMs, and lightweight VMs.

7.1 Containers inside VMs
In the nested container architecture, each container is encapsu-

lated in a VM, and applications run inside the container. One or
more containers may be encapsulated inside a VM. This nesting
has several advantages. Applications can benefit from the secu-
rity and performance isolation provided by the VM, and still take
advantage of the provisioning and deployment aspects of contain-
ers. This approach is quite popular, and is used to run containers in
public clouds where isolation and security are important concerns.
Container services in public clouds, such as Amazon AWS Elastic
Container Service [1] and Google Cloud Platform’s Container En-
gine [3] run user containers inside virtual machine instances which
are re-purposed to also support container deployment stacks such
as Docker. From a cloud and data center operator’s point of view,
an advantage of this approach is that the existing hardware virtu-
alization based architecture can be used for resource provisioning
and management.

In addition to public cloud settings, nested containers in VMs
are also useful on the desktop if the host operating system does not
natively support containers, but can run virtual machines. Such a
setup is the default way of running Docker on operating systems
like Mac-OS (which cannot run Linux binaries, and uses Virtual-
Box VMs to run Docker containers). This allows users and devel-
opers to run containers in their existing environment.

Nested containers in VMs provide another, perhaps surprising
performance benefit. Since only containers from a single user may
be allowed to run in a VM, neighboring containers within a VM
can now be trusted. In addition to reducing the security risk, this
also opens the door for using soft resource limits. As noted in
Section 5.1, soft container resource limits allow containers to use
under-utilized resources, thereby increasing the application perfor-
mance. In Figure 12, we compare the performance of applications
running on LXC, VMs, and nested LXC containers inside a VM.
In the case of nested containers, the container resource limits (both
CPU and memory) are soft-limited, and we run multiple contain-

ers inside a VM. With VMs and LXCs, we only run a single ap-
plication in each container/VM. We see that the running time of
kernel-compile in nested containers (LXCVM) is about 2% lower
than compared to VMs, and the YCSB read latency is lower by
5% compared to VMs. Thus, running larger VMs and running soft-
limited containers inside them improves performance slightly when
compared to running applications in separate virtual machine silos.
Result: Nesting containers in VMs can provide VM-like isolation
for applications, and enables the use of soft resource limits which
provide slightly improved performance compared to VMs.

7.2 Lightweight VMs
We have seen how nested containers combine VM-level isolation

and the deployment and provisioning aspects of containers. There
is another approach which attempts to provide similar functionality,
but does not rely on nesting. Instead, lightweight VM approaches
like Clear Linux [36] and VMWare’s Project Bonneville [29] seek
to provide extremely low overhead hardware virtualization. Light-
weight VMs run customized guest operating systems which are
optimized for quick boot-up, and are characterized by their low
footprint and extensive use of para-virtualized interfaces. Light-
weight VMs therefore provide reduced footprint and deployment
times compared to traditional hardware VMs. We will use the open
source Clear Linux system as a representative example of such a
lightweight VM.

Lightweight VMs seek to address two of the major drawbacks of
traditional VMs: footprint, and host transparency. The VM foot-
print is reduced by removing redundant functionality provided by
the hypervisor, such as bootloaders, emulation for legacy devices
such as floppy drives, etc. Along with optimizations for fast kernel
boot, this allows the VM to boot in under one second, compared to
tens of seconds required to boot traditional VMs. We measured the
launch time of Clear Linux Lightweight VMs to be under 0.8 sec-
onds, compared to 0.3 seconds for the equivalent Docker container.
While containers and lightweight VMs can be started up faster than
traditional VMs, traditional VMs can also be quickly restored from
existing snapshots using lazy restore [53], or can be cloned from
existing VMs [41]. Thus, instead of relying on a cold boot, fast
restore and cloning techniques can be applied to traditional VMs to
achieve the same effect.

Containers can access files on the host file system directly, and
executables, libraries and data required for application operation
does not have to be first transferred to a virtual disk as is the case
for traditional VMs. As noted earlier, virtual disks decouple the
host and guest operation and pose an inconvenience. An impor-
tant feature of lightweight VMs like Clear Linux is that the VMs
can directly access host file system data. This eliminates the time
consuming step of creating bespoke virtual disk images for each
application. Instead, VMs can share and access files on the host
file system without going through the virtual disk abstraction. This
is enabled by new technologies in Linux like Direct-Access (DAX),
which allows true zero copy into the VM’s user address space and
bypasses the page cache completely. In addition to removing the
need for dedicated block-level virtual disks, zero-copy and page
cache bypass reduces the memory footprint of these VMs by elim-
inating double caching [47]. To translate guest file system opera-
tions for the host file system, Clear Linux uses the 9P file system
interface [9].

This combination of lightweight hardware virtualization and di-
rect host file system access enables new ways of combining hard-
ware and operating system virtualization. For example, Clear Linux
can run existing Docker containers and run them as lightweight
VMs, thus providing security and performance isolation, and mak-

ing VMs behave like containers as far as deployment goes.
Result: Lightweight VMs with host filesystem sharing reduces vir-
tual machine overhead and footprint, providing container-like de-
ployment with the isolation properties of VMs.

8. RELATED WORK
Both hardware and operating system virtualization have a long

and storied history in computing. More recently, hypervisors such
as Xen [26], VMware ESX [50], and KVM [40] have been used to
provide virtualized data centers. Operating system virtualization in
UNIX has been originally implemented in FreeBSD using Jails [38]
and in Solaris using Zones [28]. The recent surge of interest in
containers has been partly because of the maturation of cgroups
and namespaces in Linux, and partly because of Docker [2].

Both hardware and operating system virtualization technologies
have been growing at a rapid pace, and research work evaluating
the performance aspects of these platforms provides an empirical
basis for comparing their performance. A performance study of
container and virtual machine performance in Linux is performed
in [31, 25], which evaluates LXC, Docker, and KVM across a wide
spectrum of benchmarks. While conventional wisdom and folklore
point to the lightweight nature of containers compared to VMs,
recent work [25] has investigated memory footprint of VMs with
page-level memory deduplication [47, 27] and shown that the ef-
fective memory footprint of VMs may not be as large as widely
claimed. Containers have been pitched as a viable alternative to
VMs in domains where strict isolation is not paramount such as
high performance computing [46, 52] and big data processing [32].
Docker storage performance is investigated in [33].

The high performance overheads of hardware virtualization in
certain situations have been well studied [35], and many approaches
have been proposed to reduce the hypervisor overhead [39]. Op-
erating system virtualization has always promised to deliver low
overhead isolation, and comparing the two approaches to virtual-
ization is covered in [48, 30]. While most prior work on compar-
ing performance of containers vs. VMs has focused on a straight
shoot-out between the two, our work also considers performance
interference [43], overcommitment, and different types of resource
limits. Isolation in multi-tenants environments is crucial, especially
in public clouds which have begun offering container services in
addition to conventional VM based servers [1, 3, 4]. In addition
to evaluating the performance of the two virtualization technolo-
gies, we also show the performance of containers inside VMs and
lightweight VMs such as Clear Linux [36].

Unikernels [42] have been proposed as another virtualization
platform that run applications directly on hardware virtual machines
without a guest OS. Their value in production environments is still
being determined [19].

Both VMs and containers need to be deployed across data centers
at large scale, and we have also compared the capabilities of their
respective management frameworks. Frameworks such as Open-
Stack [8], vCenter [23] provide the management functionality for
VMs. Kubernetes [5], Docker Swarm [13], Mesos [34], Marathon [18],
and many other burgeoning frameworks provide equivalent func-
tionality for containers.

9. CONCLUSIONS
Containers and VMs differ in the virtualization technology they

use, and this difference manifests itself in their performance, man-
ageability, and use-cases. Containers promise bare metal perfor-
mance, but as we have shown, they may suffer from performance
interference in multi-tenant scenarios. Containers share the under-

lying OS kernel, and this contributes to the lack of isolation. Unlike
VMs, which have strict resource limits, the containers also allow
soft limits, which are helpful in overcommitment scenarios, since
they may use underutilized resources allocated to other containers.
The lack of isolation and more efficient resource sharing due to
soft-limits makes running containers inside VMs a viable architec-
ture.

While containers may offer near bare metal performance and a
low footprint, their popularity has also been fueled by their integra-
tion into the software development process. In particular, Docker’s
use of copy-on-write layered file systems and version control has
enabled easier continuous delivery and integration and a more ag-
ile software development process. Lightweight VMs such as Clear
Linux aim to provide the popular container features, but with the
isolation properties of VMs, and hybrid virtualization approaches
seems to be a promising avenue for research.

Acknowledgements. We thank all the reviewers for their insight-
ful comments, which improved the quality of this paper. This work
is supported in part by NSF grants #1422245 and #1229059 and a
gift from Cisco. Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

10. REFERENCES
[1] Amazon EC2 Container Service.

https://aws.amazon.com/ecs, June 2015.
[2] Docker. https://www.docker.com/, June 2015.
[3] Google container engine.

https://cloud.google.com/container-engine, June 2015.
[4] Joyent Public Cloud. https://www.joyent.com, June 2015.
[5] Kubernetes. https://kubernetes.io, June 2015.
[6] Linux cgroups. https://www.kernel.org/doc/Documentation/

cgroup-v1/cgroups.txt, June 2015.
[7] Lxc. https://linuxcontainers.org/, June 2015.
[8] Openstack. https://www.openstack.org, June 2015.
[9] 9p file system interface.

http://www.linux-kvm.org/page/9p_virtio, March 2016.
[10] Bash on ubuntu on windows.

https://msdn.microsoft.com/en-us/commandline/wsl/about,
2016.

[11] Checkpoint Restore in User Space. https://criu.org/, March
2016.

[12] Cloudstack. https://cloudstack.apache.org/, March 2016.
[13] Docker Swarm.

https://www.docker.com/products/docker-swarm, March
2016.

[14] Getting and Setting Linux Resource Limits.
http://man7.org/linux/man-pages/man2/setrlimit.2.html,
March 2016.

[15] Libvirt Virtualization API. https://libvirt.org, March 2016.
[16] Linux Kernel Namespaces.

https://man7.org/linux/man-pages/man7/namespaces.7.html,
March 2016.

[17] Lxd. https://linuxcontainers.org/lxd/, January 2016.
[18] Marathon. https://mesosphere.github.io/marathon/, May

2016.
[19] Unikernels are Unfit for Production. https:

//www.joyent.com/blog/unikernels-are-unfit-for-production,
January 2016.

[20] Unioning File Systems. https://lwn.net/Articles/327738/,

March 2016.
[21] Vagrant. https://www.vagrantup.com/, March 2016.
[22] VMware ESX hypervisor.

https://www.vmware.com/products/vsphere-hypervisor,
March 2016.

[23] VMware vCenter.
https://www.vmware.com/products/vcenter-server, March
2016.

[24] Windows containers. https://msdn.microsoft.com/
virtualization/windowscontainers/containers_welcome, May
2016.

[25] K. Agarwal, B. Jain, and D. E. Porter. Containing the Hype.
In Proceedings of the 6th Asia-Pacific Workshop on Systems,
page 8. ACM, 2015.

[26] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
Art of Virtualization. ACM SIGOPS Operating Systems
Review, 37(5):164–177, 2003.

[27] S. Barker, T. Wood, P. Shenoy, and R. Sitaraman. An
Empirical Study of Memory Sharing in Virtual Machines. In
USENIX Annual Technical Conference, pages 273–284,
2012.

[28] J. Beck, D. Comay, L. Ozgur, D. Price, T. Andy, G. Andrew,
and S. Blaise. Virtualization and Namespace Isolation in the
Solaris Operating System (psarc/2002/174). 2006.

[29] B. Corrie. VMware Project Bonneville. http://blogs.vmware.
com/cloudnative/introducing-project-bonneville/, March
2016.

[30] R. Dua, A. R. Raja, and D. Kakadia. Virtualization vs
Containerization to Support PAAS. In International
Conference on Cloud Engineering. IEEE, 2014.

[31] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An
Updated Performance Comparison of Virtual Machines and
Linux Containers. In Performance Analysis of Systems and
Software (ISPASS), 2015 IEEE International Symposium On,
pages 171–172.

[32] M. Gomes Xavier, M. Veiga Neves, F. de Rose, and
C. Augusto. A Performance Comparison of Container-based
Virtualization Systems for Mapreduce Clusters. In
Euromicro International Conference on Parallel, Distributed
and Network-Based Processing. IEEE, 2014.

[33] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Slacker: Fast Distribution with Lazy
Docker Containers. In Proceedings of the 14th Usenix
Conference on File and Storage Technologies, pages
181–195. USENIX Association, 2016.

[34] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica. Mesos: A
Platform for Fine-Grained Resource Sharing in the Data
Center. In NSDI, volume 11, pages 22–22, 2011.

[35] J. Hwang, S. Zeng, F. Y. Wu, and T. Wood. A
Component-based Performance Comparison of Four
Hypervisors. In IFIP/IEEE International Symposium on
Integrated Network Management. IEEE.

[36] Intel. Clear linux. http://clearlinux.org, March 2016.
[37] Joyent. Lx branded zones.

https://wiki.smartos.org/display/DOC/LX+Branded+Zones,
June 2015.

[38] P.-H. Kamp and R. N. Watson. Jails: Confining the
Omnipotent Root. In Proceedings of the 2nd International
SANE Conference, volume 43, page 116, 2000.

https://aws.amazon.com/ecs
https://www.docker.com/
https://cloud.google.com/container-engine
https://www.joyent.com
https://kubernetes.io
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://linuxcontainers.org/
https://www.openstack.org
 http://www.linux-kvm.org/page/9p_virtio
https://msdn.microsoft.com/en-us/commandline/wsl/about
 https://criu.org/
 https://cloudstack.apache.org/
 https://www.docker.com/products/docker-swarm
 http://man7.org/linux/man-pages/man2/setrlimit.2.html
 https://libvirt.org
 https://man7.org/linux/man-pages/man7/namespaces.7.html
https://linuxcontainers.org/lxd/
https://mesosphere.github.io/marathon/
https://www.joyent.com/blog/unikernels-are-unfit-for-production
https://www.joyent.com/blog/unikernels-are-unfit-for-production
 https://lwn.net/Articles/327738/
 https://www.vagrantup.com/
 https://www.vmware.com/products/vsphere-hypervisor
https://www.vmware.com/products/vcenter-server
https://msdn.microsoft.com/virtualization/windowscontainers/containers_welcome
https://msdn.microsoft.com/virtualization/windowscontainers/containers_welcome
 http://blogs.vmware.com/cloudnative/introducing-project-bonneville/
 http://blogs.vmware.com/cloudnative/introducing-project-bonneville/
http://clearlinux.org
https://wiki.smartos.org/display/DOC/LX+Branded+Zones

[39] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. NoHype:
Virtualized Cloud Infrastructure without the Virtualization.
In ACM SIGARCH Computer Architecture News, volume 38,
pages 350–361. ACM, 2010.

[40] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
KVM: the Linux Virtual Machine Monitor. In Proceedings
of the Linux Symposium, volume 1, pages 225–230, 2007.

[41] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. De Lara, M. Brudno, and
M. Satyanarayanan. SnowFlock: Rapid Virtual Machine
Cloning for Cloud Computing. In EuroSys, April 2009.

[42] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft.
Unikernels: Library operating systems for the cloud. In
Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 461–472, New
York, NY, USA, 2013. ACM.

[43] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane,
D. Dimatos, G. Hamilton, M. McCabe, and J. Owens.
Quantifying the Performance Isolation Properties of
Virtualization Systems. In Workshop on Experimental
computer science, page 6. ACM, 2007.

[44] D. Mishra and P. Kulkarni. Comparative Analysis of Page
Cache Provisioning in Virtualized Environments. In
Modelling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2014 IEEE 22nd
International Symposium on, pages 213–222. IEEE, 2014.

[45] J. Ouyang and J. R. Lange. Preemptable Ticket Spinlocks:
Improving Consolidated Performance in the Cloud. In ACM
SIGPLAN Notices, volume 48, pages 191–200. ACM, 2013.

[46] C. Ruiz, E. Jeanvoine, and L. Nussbaum. Performance
Evaluation of Containers for HPC. In Euro-Par: Parallel
Processing Workshops, 2015.

[47] P. Sharma and P. Kulkarni. Singleton: System-wide Page
Deduplication in Virtual Environments. In Proceedings of the
21st international symposium on High-Performance Parallel
and Distributed Computing, pages 15–26. ACM, 2012.

[48] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and
L. Peterson. Container-based Operating System
Virtualization: A Scalable, High-Performance Alternative to
Hypervisors. In EuroSys. ACM, 2007.

[49] C. Tang. Fvd: A High-Performance Virtual Machine Image
Format for Cloud. In USENIX Annual Technical Conference,
2011.

[50] C. A. Waldspurger. Memory Resource Management in
VMware ESX Server. SIGOPS Oper. Syst. Rev.,
36(SI):181–194, Dec. 2002.

[51] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif.
Black-box and Gray-box Strategies for Virtual Machine
Migration. In NSDI, volume 7, pages 17–17, 2007.

[52] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto,
T. Lange, and C. A. De Rose. Performance Evaluation of
Container-based Virtualization for High Performance
Computing Environments. In Euromicro International
Conference on Parallel, Distributed and Network-Based
Processing. IEEE, 2013.

[53] I. Zhang, A. Garthwaite, Y. Baskakov, and K. C. Barr. Fast
Restore of Checkpointed Memory Using Working Set
Estimation. In VEE, 2011.

	Introduction
	Background
	Hardware Virtualization
	Operating System Virtualization
	Virtualized Data Centers

	Problem Statement
	Single Machine Performance
	Baseline Performance
	Performance Isolation
	CPU Isolation
	Memory Isolation
	Disk Isolation
	Network Isolation

	Overcommitment

	Cluster Management
	Resource Allocation
	Migration
	Deployment

	End-to-end Deployment
	Constructing Images
	Version Control
	Continuous Delivery/Integration

	Mixing Containers and VMs
	Containers inside VMs
	Lightweight VMs

	Related Work
	Conclusions
	References

